
Analyzing large data with Mappable Vector Library

Vladimir Dergachev1,2

1 Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Callinstrasse 38, 30167 Hannover, Germany vladimir.dergachev@aei.mpg.de
2 Leibniz Universität Hannover, D-30167 Hannover, Germany

Abstract.

A common problem when working with large data sets is that one is limited at
looking at snippets of the whole data, because retrieving the entire data set from a
database is inefficient. The solution is to bring the data closer to the user, allowing
interactive exploration at the speed of the underlying storage medium. Mappable Vector
Library (MVL) accomplishes this by memory mapping the entire data set, allowing
direct access from R using RMVL package (C library is also available). We introduce
MVL and illustrate MVL capabilities using 1TB of Gaia data.

1. Introduction

Mappable Vector Library (MVL) is a file format optimized for memory mapping. It is
designed for ease of use by both low-level C code and high-level scripting languages
(such as R).

You can use MVL files to:

• Analyze as much data as fits on your solid state drives

• Exchange bulk binary-level data between C and R programs

• Share large data between multiple processes running on the same computer

• Distribute large structured data to users

There are two libraries for C (libMVL 1) and R (RMVL 2) providing seamless
array-style access as well as database functionality of sorting the data and creating
hash-based value and spatial indices. The library functions have been optimized to
reduce the number of writes to solid state drives.

The development of MVL file format was prompted by the observation that mod-
ern solid state drives had transfer speeds similar to the speed of main memory of older
computers. However, the direct use of solid state drives (SSD) as swap space to emulate
physical memory runs has difficulties, stemming from mismatch between block size of

1https://github.com/volodya31415/libMVL

2https://cran.r-project.org/package=RMVL

1



2 Dergachev

SSDs and main memory, requirement to minimize writes to SSD and an initial cost of
loading terabytes of data into a program during startup.

A simple solution to these issues to is to memory map input data. This allows
quick “load” by a memory map call, with the program effectively starting in swapped-
out state, bringing data in as needed. The ordering of input data avoids inefficiencies
of a random swap-out process. As a bonus such scheme allows sharing of input data
between multiple processes.

The alignment of data to a specific memory boundary is a key requirement for
vector operations and to improve efficiency of CPU caches. A survey of existing data
formats such as hdf5, MyISAM, sqlite, FITS (Taylor 2019; Taylor & Page 2008), par-
quet and others revealed none that were capable of providing aligned binary data that is
directly suitable for computation. Portability is also an issue, for example, it is difficult
to incorporate hdf5 library into Android applications.

A new file format was therefore required that would guarantee alignment of binary
data. To make programming convenient one needs a simple way to obtain location of
data after memory mapping - an equivalent of dynamic linking. In addition, it would
be nice to have “global” functions that operate on large data as a whole and provide
functionality traditionally available in relational databases.

2. MVL architecture

P
re

a
m

b
le

al
ig

n
m

en
t

M
V

L
v
ec

to
r

M
V

L
v
ec

to
r

h
ea

d
er

le
n
g
th

ty
p
e

m
et

ad
at

a
o
ff

se
t

ar
ra

y
d
at

a
..
.

..
.

M
V

L
v
ec

to
r

..
.

M
V

L
v
ec

to
r

P
o
st

a
m

b
le

d
ir

ec
to

ry
o
ff

se
t

Figure 1. MVL file layout. Each MVL vector is positioned so that the offset of
the data is divisible by the value of alignment field. The default is 64. The postamble
contains a “directory offset” that points to MVL vector storing a named list of offsets
to other vectors. In filesystem terminology, this is the root directory of MVL file.

Unlike application-level databases the MVL files are designed for direct access to
data. The basic element of MVL file (Figure 2) is an MVL vector composed of a header,
describing type and length of the data, followed by a linear array of data elements. The
array is aligned to a configurable boundary, 64 bytes by default. This allows to use the
data as is with vector arithmetic operations.



Analyzing large data with Mappable Vector Library 3

Each MVL vector is uniquely identified by the 64-bit offset from the beginning of
the MVL file. This makes it very easy to access the data in C - just memory map the
file and use the offset to obtain a pointer to data.

The MVL vectors support character, integer and floating point types, as well as,
a special offset type used to store a list of offsets to other vectors. This allows to or-
ganize the data into a tree with arbitrary complexity and maps nicely to the internal
representation used by scripting languages such as R or Tcl.

Each MVL vector header can have an optional offset to metadata, such as a vector
of character names associated to elements of MVL vector array. This allows to create
named lists, which can be used to represent sets, dictionaries and structures. The MVL
library functions supporting named lists use 64 bit hashes for fast lookups.

The MVL file ends with a postamble containing an offset to the top-level vector of
offsets called a directory.

MVL files are designed to be written sequentially, with the directory and postam-
ble written out during the closing of the file.

3. Database functionality

Memory mapping of data makes it easy to access values at a known address. However,
often one needs to solve an inverse problem - find the address of data by its value. In
SQL databases this is used to perform searches and merge tables by column values.

A common way to make this computationally efficient is to use data indices. For
example, one can create an array of indices that sorts input data in ascending order. The
values can then be looked up by performing a binary search.

This approach is difficult to use for MVL files because the size of the data can be
so large that a binary search performs too many random lookups. On modern computers
a memory access at an unpredictable location takes a very long time to complete, and
having many of them for each lookup is unacceptable.

The solution used in libMVL, at the time of publication of this paper, is to uti-
lize hash based indices. The hash function used produces 64-bit hash values that have
enough entropy to have few (or none) collisions for very large data. The hash function
has been optimized for speed and is able to saturate read bandwidth of modern SSDs
on a single CPU thread.

An associative hash map has fixed number of random address dereferences allow-
ing the algorithm to scale to arbitrary large data sizes. A similar hash-based technique
is used to construct spatial indices which lookup values based on proximity to a given
data point. The hashes are also used to perform computations that process data in
groups. The hash function values have good statistical properties and can be used to
obtain randomized samples in a deterministic fashion.

4. Use case: a galaxy in a file

One of the most exciting developments in astrophysics is the emergence of gravitational
wave observatories (Aasi 2015) as an observational tool. A particularly exciting area
of gravitational wave research is the quest to find persistent gravitational wave sources
such as rapidly spinning neutron stars with equatorial deformation (Dergachev & Papa
2022; Riles 2022).



4 Dergachev

A recently released gravitational wave atlas of the sky (Dergachev & Papa 2022)
in MVL format provides frequency-resolved all-sky data describing potential strength
of such sources. As the signals are very weak, the visibility of any viable source is
limited to a few hundred parsecs. The size of the data set and correspondingly large
trials factor makes identification of weak sources challenging.

A way to solve this problem is to use an astrophysically motivated prior. The Gaia
data (Brown 2022; de Bruijne 2016) provides a comprehensive database of stars in the
Milky Way and is an excellent resource for cross-correlation studies.

However, the main Gaia data is over 1 TB in size and is provided as 3386 com-
pressed CSV files. While one can use online databases to search for a given object,
discovery of unknown sources requires exploration of the Gaia data as a whole. To
make this possible Gaia data was converted to MVL format.

The resulting main Gaia data in MVL format (1.3 TB) is easily memory mapped
into R. With commonly available solid state drive speeds of 3.5 GB/s, it is possible to
scan the entire data in under 7 minutes. Of course, in practice, one does not need all the
different variables. For more sophisticated access there are indices allowing to search
and scan in order of distance from Earth, or by sky position.

Gaia data in MVL format is now available to the wider community 3 for download
using HTTP and Torrent.

5. Summary

Mappable Vector Library has been designed for memory mapped access to large data
sets. It supports structured data and database functions. MVL files can be used on a
cluster to reduce memory footprint of single threaded programs. MVL files can also
be provided directly to other scientists, which can use them directly, without need for
database setup.

Acknowledgments. This work has made use of data from the European Space
Agency (ESA) mission Gaia, processed by the Gaia Data Processing and Analysis
Consortium.

References

Aasi, J. e. a. 2015, Classical and Quantum Gravity, 32, 074001. 1411.4547
Brown, A. G. A. e. a. 2022, arXiv e-prints, arXiv:2208.00211. 2208.00211
de Bruijne, J. H. J. e. a. 2016, A&A, 595, A1. 1609.04153
Dergachev, V., & Papa, M. A. 2022, A frequency resolved atlas of the sky in continuous gravi-

tational waves. URL https://arxiv.org/abs/2202.10598
Riles, K. 2022, Searches for continuous-wave gravitational radiation. URL https://arxiv.

org/abs/2206.06447

Taylor, M. B. 2019, in Astronomical Data Analysis Software and Systems XXVII, edited by
P. J. Teuben, M. W. Pound, B. A. Thomas, & E. M. Warner, vol. 523 of Astronomical
Society of the Pacific Conference Series, 43. 1811.09480

Taylor, M. B., & Page, C. G. 2008, in Astronomical Data Analysis Software and Systems XVII,
edited by R. W. Argyle, P. S. Bunclark, & J. R. Lewis, vol. 394 of Astronomical Society
of the Pacific Conference Series, 422

3https://www.atlas.aei.uni-hannover.de/work/volodya/Gaia_dr3/


